Package: FastJM 1.4.2
FastJM: Semi-Parametric Joint Modeling of Longitudinal and Survival Data
Maximum likelihood estimation for the semi-parametric joint modeling of competing risks and longitudinal data applying customized linear scan algorithms, proposed by Li and colleagues (2022) <doi:10.1155/2022/1362913>. The time-to-event data is modelled using a (cause-specific) Cox proportional hazards regression model with time-fixed covariates. The longitudinal outcome is modelled using a linear mixed effects model. The association is captured by shared random effects. The model is estimated using an Expectation Maximization algorithm.
Authors:
FastJM_1.4.2.tar.gz
FastJM_1.4.2.zip(r-4.5)FastJM_1.4.2.zip(r-4.4)FastJM_1.4.2.zip(r-4.3)
FastJM_1.4.2.tgz(r-4.4-x86_64)FastJM_1.4.2.tgz(r-4.4-arm64)FastJM_1.4.2.tgz(r-4.3-x86_64)FastJM_1.4.2.tgz(r-4.3-arm64)
FastJM_1.4.2.tar.gz(r-4.5-noble)FastJM_1.4.2.tar.gz(r-4.4-noble)
FastJM_1.4.2.tgz(r-4.4-emscripten)FastJM_1.4.2.tgz(r-4.3-emscripten)
FastJM.pdf |FastJM.html✨
FastJM/json (API)
NEWS
# Install 'FastJM' in R: |
install.packages('FastJM', repos = c('https://shanpengli.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/shanpengli/fastjm/issues
Last updated 9 months agofrom:c8b70f44fe. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 26 2024 |
R-4.5-win-x86_64 | OK | Oct 26 2024 |
R-4.5-linux-x86_64 | OK | Oct 26 2024 |
R-4.4-win-x86_64 | OK | Oct 26 2024 |
R-4.4-mac-x86_64 | OK | Oct 26 2024 |
R-4.4-mac-aarch64 | OK | Oct 26 2024 |
R-4.3-win-x86_64 | OK | Oct 26 2024 |
R-4.3-mac-x86_64 | OK | Oct 26 2024 |
R-4.3-mac-aarch64 | OK | Oct 26 2024 |
Exports:AUCjmcsfixefjmcsMAEQjmcsPEjmcsranefsurvfitjmcs
Dependencies:backportsbase64encbslibcachemcaretcheckmateclasscliclockclustercmprskcodetoolscolorspacecpp11data.tablediagramdigestdoParalleldplyre1071evaluatefansifarverfastmapfontawesomeforeachforeignFormulafsfuturefuture.applygenericsggplot2globalsgluegowergridExtragtablehardhathighrHmischtmlTablehtmltoolshtmlwidgetsipredisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixMatrixModelsmemoisemetsmgcvmimeModelMetricsmultcompmunsellmvtnormnlmennetnumDerivparallellypecpillarpkgconfigplotrixplyrpolsplinepROCprodlimprogressrproxyPublishpurrrquantregR6rangerrappdirsRColorBrewerRcppRcppArmadilloRcppEigenrecipesreshape2riskRegressionrlangrmarkdownrmsrpartrstudioapisandwichsassscalesshapeSparseMSQUAREMstatmodstringistringrsurvivalTH.datatibbletidyrtidyselecttimechangetimeDatetimeregtimeROCtinytextzdbutf8vctrsviridisviridisLitewithrxfunyamlzoo