FastJM - Semi-Parametric Joint Modeling of Longitudinal and Survival Data
Maximum likelihood estimation for the semi-parametric joint modeling of competing risks and longitudinal data applying customized linear scan algorithms, proposed by Li and colleagues (2022) <doi:10.1155/2022/1362913>. The time-to-event data is modelled using a (cause-specific) Cox proportional hazards regression model with time-fixed covariates. The longitudinal outcome is modelled using a linear mixed effects model. The association is captured by shared random effects. The model is estimated using an Expectation Maximization algorithm.
Last updated 9 months ago
cppcpp
4.35 score 5 stars 1 packages 2 scripts 318 downloads