Package: PDXpower 1.0.3
PDXpower: Time to Event Outcome in Experimental Designs of Pre-Clinical Studies
Conduct simulation-based customized power calculation for clustered time to event data in a mixed crossed/nested design, where a number of cell lines and a number of mice within each cell line are considered to achieve a desired statistical power, motivated by Eckel-Passow and colleagues (2021) <doi:10.1093/neuonc/noab137> and Li and colleagues (2024) <doi:10.48550/arXiv.2404.08927>. This package provides two commonly used models for powering a design, linear mixed effects and Cox frailty model. Both models account for within-subject (cell line) correlation while holding different distributional assumptions about the outcome. Alternatively, the counterparts of fixed effects model are also available, which produces similar estimates of statistical power.
Authors:
PDXpower_1.0.3.tar.gz
PDXpower_1.0.3.zip(r-4.5)PDXpower_1.0.3.zip(r-4.4)PDXpower_1.0.3.zip(r-4.3)
PDXpower_1.0.3.tgz(r-4.4-any)PDXpower_1.0.3.tgz(r-4.3-any)
PDXpower_1.0.3.tar.gz(r-4.5-noble)PDXpower_1.0.3.tar.gz(r-4.4-noble)
PDXpower_1.0.3.tgz(r-4.4-emscripten)PDXpower_1.0.3.tgz(r-4.3-emscripten)
PDXpower.pdf |PDXpower.html✨
PDXpower/json (API)
# Install 'PDXpower' in R: |
install.packages('PDXpower', repos = c('https://shanpengli.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/shanpengli/pdxpower/issues
Last updated 4 months agofrom:a6e5919d8c. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 29 2024 |
R-4.5-win | OK | Oct 29 2024 |
R-4.5-linux | OK | Oct 29 2024 |
R-4.4-win | OK | Oct 29 2024 |
R-4.4-mac | OK | Oct 29 2024 |
R-4.3-win | OK | Oct 29 2024 |
R-4.3-mac | OK | Oct 29 2024 |
Exports:plotpowerPowANOVAPowANOVADatPowerTablePowFrailtyPowFrailtyDatSimPDXdata
Dependencies:abindbackportsbase64encbootbroombslibcachemcarcarDataclicolorspacecommonmarkcorrplotcowplotcpp11crayonDerivdigestdoBydplyrfansifarverfastmapfontawesomeFormulafrailtypackfsgenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtablehtmltoolshttpuvisobandjquerylibjsonlitelabelinglaterlatticelifecyclelme4magrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpolynompromisespurrrquantregR6rappdirsRColorBrewerRcppRcppEigenrlangrootSolverstatixsassscalesshinysourcetoolsSparseMstatmodstringistringrsurvC1survivaltibbletidyrtidyselectutf8vctrsviridisLitewithrxtable